Blog IPA 6 SMANIK
STATISTIKA


1. Rumus Rataan Hitung (Mean)
Rata-rata hitung dihitung dengan cara membagi jumlah nilai data dengan banyaknya data. Rata-rata hitung bisa juga disebut mean.

a) Rumus Rataan Hitung dari Data Tunggal

b) Rumus Rataan Hitung Untuk Data yang Disajikan Dalam Distribusi Frekuensi

Dengan : fixi = frekuensi untuk nilai xi yang bersesuaian
xi = data ke-i

c) Rumus Rataan Hitung Gabungan

2. Rumus Modus

a. Data yang belum dikelompokkan

Modus dari data yang belum dikelompokkan adalah ukuran yang memiliki frekuensi tertinggi. Modus dilambangkan mo.
b. Data yang telah dikelompokkan

Rumus Modus dari data yang telah dikelompokkan dihitung dengan rumus:

Dengan : Mo = Modus
L = Tepi bawah kelas yang memiliki frekuensi tertinggi (kelas modus) i = Interval kelas
b1 = Frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sebelumnya
b2 = frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sesudahnya

3. Rumus Median (Nilai Tengah)


a) Data yang belum dikelompokkan

Untuk mencari median, data harus dikelompokan terlebih dahulu dari yang terkecil sampai yang terbesar.

b) Data yang Dikelompokkan




Dengan : Qj = Kuartil ke-j
j = 1, 2, 3
i = Interval kelas
Lj = Tepi bawah kelas Qj
fk = Frekuensi kumulatif sebelum kelas Qj
f = Frekuensi kelas Qj
n = Banyak data

4. Rumus Jangkauan ( J )

Selisih antara nilai data terbesar dengan nilai data terkecil.

5. Rumus Simpangan Quartil (Qd)
6. Rumus Simpangan baku ( S )

7. Rumus Simpangan rata – rata (SR)

8. Rumus Ragam (R)

Contoh soal statistika

Tabel 1.1 dibawah ini:

Jawab :



TRIGONOMETRI

Rumus Trigonometri

A. Penggunaan Rumus Sinus dan Cosinus Jumlah Dua Sudut, Selisih Dua Sudut, dan Sudut Ganda
1. Rumus Cosinus Jumlah dan Selisih Dua Sudut
Sebelum membahas rumus trigonometri cosinus untuk jumlah dan selisih dua sudut, perlu kamu ingat kembali dalam segitiga siku-siku ABC berlaku:
trigonometri segitiga siku-siku
Selanjutnya, perhatikanlah gambar berikut.
lingkaran
Dari lingkaran yang berpusat di O(0, 0) dan berjari-jari 1 satuan misalnya,
∠ AOB = ∠ A
∠ BOC = ∠ B
maka ∠AOC = ∠ A + ∠ B
Dengan mengingat kembali tentang koordinat
Cartesius, maka:
a. koordinat titik A (1, 0)
b. koordinat titik B (cos A, sin A)
c. koordinat titik C {cos (A + B), sin (A + B)}
d. koordinat titik D {cos (–B), sin (–B)} atau (cos B, –sin B)
rumus selisih pada trigonometri
Rumus cosinus jumlah dua sudut:
cos (A + B) = cos A cos B – sin A sin B
Dengan cara yang sama, maka:
cos (A – B) = cos (A + (–B))
cos (A – B) = cos A cos (–B) – sin A sin (–B)
cos (A – B) = cos A cos B + sin A sin B
Rumus cosinus selisih dua sudut:
cos (A – B) = cos A cos B + sin A sin B
2. Rumus Sinus Jumlah dan Selisih Dua Sudut
Perhatikan rumus berikut ini.
penjumlahan pada sinus
Maka rumus sinus jumlah dua sudut: sin (A + B) = sin A cos B + cos A sin B
Dengan cara yang sama, maka:
sin (A – B) = sin {A + (–B)}
= sin A cos (–B) + cos A sin (–B)
= sin A cos B – cos A sin B
Rumus sinus selisih dua sudut: sin (A – B) = sin A cos B – cos A sin B
3. Rumus Tangen Jumlah dan Selisih Dua Sudut
rumus tangen jumlah dan selisih
rumus tangen
4. Penggunaan Rumus Sinus, Cosinus, dan Tangen Sudut Ganda
Rumus untuk sin 2α
Anda telah mengetahui bahwa
sin (α + β) = sin α cos β + cos α sin β.
Untuk β = α, diperoleh
sin (α + α) = sin α cos α + cos α sin α
sin 2 α = 2 sin α cos α
Jadi, sin 2α = 2 sin α cos α
Rumus untuk cos 2α
Anda juga telah mempelajari bahwa
rumus cos 2a
Rumus untuk tan 2α
rumus tan 2a
Perkalian, Penjumlahan, serta Pengurangan Sinus dan Kosinus
Perkalian Sinus dan Kosinus
Kita telah mempelajari rumus-rumus jumlah dan selisih dua sudut dalam trigonometri, yaitu:
perkalian sinus dan kosinus
sambungan perkalian sinus dan kosinus
Penjumlahan dan Pengurangan Sinus
Rumus perkalian sinus dan kosinus dalam trigonometri di bagian C.1 dapat
ditulis dalam rumus berikut.
penjumlahan dan pengurangan sinus dan cosinus
penjumlahan dan pengurangan sinus dan cosinus



Identitas Trigonometri

identitas trigonometri



Contoh Soal Trigonometri

contoh soal dan jawaban trigonometri1






0 Responses

Post a Comment